|
Training Everything from training routines to videos. |
|
LinkBack | Thread Tools | Display Modes |
|
|||
What makes an exercise “Super Responder”?
A Roundtable Discussion with Alan Aragon, Dr. Conrad Earnest and Dr. Jose Antonio
Pro athlete posing Dorian was clearly a super responder! Most people most of the time people will respond to exercise in a fairly predictable manner. When doing research on a group of people put on a specific exercise regimen, the majority will respond in a fairly typical and expected fashion. However, what they will also find, are a small percent of people who fall on both ends of the extreme, what might be termed non-responders on one side and super responders on the other. They are always a very small percent of a study as expected, but have been a consistent finding since, well, forever. Those two groups that fall well outside the typical response of the larger group, were once considered a statistical anomaly, or perhaps non-compliant, or other possibilities, without much attention given to them. However, more recent studies have focused on those non-responders, and studies have found identifiable genetic differences in non-responders to more typical responders. I cover that topic in a prior post HERE for those interested. What of super responders? What do we know of them? It’s my view if we can identify what makes these genetic elites respond as they do, we may be able to apply some of that information to us mere mortals in the future. There’s surprising little hard data on super responders, but anyone who has been involved in exercise physiology research, and or worked with athletes over the years has seen them. What’s a super responder? As the name implies, a person who responds to exercise in a manner so unusually and un expectedly, you just marvel at their elite genetics to the point it’s hard to view them as the same species as the rest of us! I will admit my bias here in that I’m mostly interested in resistance training super responders, but they will exist in other endeavors too to be sure. I have seen what I’d consider genetic elite super responders a handful of times in my thirty plus years in the “biz” and they never fail to amaze me. I worked with one guy who trained sporadically at best following a haphazard program and his nutrition, in a word, sucked. He’d diet for a few weeks, and win every local and regional show he did, then with a little actual effort – via my assistance with keeping him on track – won a national level show and got a pro card. After he won his pro card, he decided to take time off from the gym. Six months later he comes to a cookout I was having and after six months of no exercise, looked only slightly smaller! He still looked better than 99% of the people busting their butts in the gym year in and year out and I wanted to kill him. I kid! This super responder phenomena is not limited to men in the least. Just recently I met a gal who looked like someone who was in great shape and exercised regularly. Lean, muscular, shapely was she. Looked like she was perhaps four-six weeks out from a figure show. I asked her where she worked out and she said she didn’t. After a lengthy discussion I came to learn she did no exercise other than her work as a physical therapist (working on my torn rotator cuff but that’s another story) ate mostly fast food until recently, and in her late 30s. Yet, she looked better than 90% of the people you’d see in the gyms! As expected, everywhere she goes people ask her what she does for a workout and nutrition plan she follows, etc. Frankly, I was gobsmacked! I can’t even fathom what she’d look like if she regularly hit the gym. She said her entire family was like that. She showed me a picture of her brother who does lift weights, and he was a monster. I have been in the biz a long time, worked with pro bodybuilders, Olympic track athletes, SWAT teams, and so forth, and it takes a lot to impress me. The super responders I have known blow my mind. I could go on with a few more stories about such people with elite genetics a fraction of the population possess, but I decided to bring in additional help to discuss the topic and see what, if any, consensus may exist on these “genetic freaks” as some will refer to them. Dr. Jose Antonio, Dr. Conrad Earnest, and Alan Aragon are some of the most knowledgeable and experienced researchers I know, who also have extensive “real world” experience in the exercise physiology arena, so I threw some Qs at them in this roundtable discussion. Readers Note: I’m intentional over simplifying the topic of statistics in terms of where people may fall in data sets and such. Bio-statistics gets real complicated real fast, and for all but science nerds like me and such, deathly boring. Q #1: Per my intro gents, no doubt you have experienced the same thing I have over the years. I know there are data on non-responders, and some interesting preliminary findings on non-responders specific to some genes identified between them, but what of super responders? Is there any data you’re aware of regarding super responders? Would seem an interesting and potentially useful area of inquiry for us mere mortals. Alan : I’ll be candid here and admit that the first thing that came to mind was a series of studies by Jacob Wilson’s group on HMB-FA, and subsequently, HMB-FA/ATP. Even though I personally cannot help but be skeptical of the findings, they are nevertheless impressive if taken on face-value. In their first study, Jacob specified in an interview that, “Now, in most studies you just recruit anybody, and you could have non-responders, moderate responders, high-responders. We filtered so we had purely high-responders to training.” The results of their selective recruitment were quite astounding. The HMB group had a LBM gain of 7.4 kg (16.28 lb) while dropping 3.5 kg (7.7 lb) body fat. In contrast, the placebo group gained 2.1 kg (4.62 lb) LBM while losing 1.7 kg (3.74 lb) body fat. These are both favorable scenarios, but the HMB group’s LBM gain –is definitely on the freakish side, especially since these subjects were resistance-trained; they were not novices primed for huge gains. In a subsequent study out of the same lab, this time using HMB-FA/ATP, subjects gained 8.5 kg LBM (18.7 lb) in 12 weeks. This LBM gain surpasses the 7.5 kg gain in the previous HMB-FA study, which already was greater than the gains seen by Bhasin et al (PMID: 8637535), whose untrained subjects were on exogenous testosterone (600 mg/week). Subjects in the training + testosterone group gained 4.2 kg of LBM in 10 weeks. Compare this to Lowery et al’s trained subjects on HMB-FA/ATP, who gained 8.4 kg LBM in 12 weeks. Furthermore, Bhasin et al’s subjects’ quadriceps thickness increased 7 mm, while 7.8 mm was gained in the HMB-FA/ATP study. In sum, the subjects in the HMB-FA studies showed LBM gains that surpassed exogenous testosterone by twofold, and were four times the typical LBM gains seen from creatine supplementation. So, at least on face-value (if you believe the data reported), these subjects were super responders; they were packing on an average of more than a pound of LBM a week for months on end – and these were not newbie gains. There’s also the alternative explanation that HMB-FA is just that magical, and even regular Joes can become supermen on it. Conrad: To be quite honest, I think we’ve had the data all along but never really talk about it. As you’ve already discussed, we spend a lot of time focusing on non-response or low response because we want to see people improve and are puzzled when they don’t. I think this applies more to health than performance. So, how we have had the data all along? If you look at any study you will see an average response accompanied by what is known as an error term. When reported correctly these take the form of standard deviations of confidence intervals, which basically show readers the variance in the response to the study. The minus sides of the average are low responders and the positive sides are the more responsive individuals. Thus, if we took everyone above the average we’d have a responder pool to examine; at least theoretically. One has to appreciate that variance related to testing can factor into this as well. And, of course, there are “outliers” who over or under respond beyond the point of what is reasonable. A classic example of this are a number of JAMA reports comparing diets like Mediterranean, DASH, Atkins and Ornish, etc. If you look at the error terms you will see that some people clearly improve more than others.(5, 4) To gain insights into performance one would have to be committed to genetic analysis for all study participants and (it’s a big “and”) be willing to recruit people into studies in the hundreds. It would be an expensive undertaking. This is actually going on in the endurance world right now. Claude Bouchard, PhD is leading a world-wide effort looking at elite athletes with VO2max’s over 70 ml/kg/min to identify gene patterns of truly elite level athletes. (1) Tuomo Rankinen, just last year, published a paper showing no evidence of a common DNA variant profile specific to world class endurance athletes.(2) Jose: I published a study on high protein intakes (> 3 g per kg daily) showing that a few subjects responded quite a bit (gaining about 6 kg of LBM in 8 weeks) while others didn’t gain a thing. Some even lost LBM. Whether that classifies as scientific evidence for a ‘super response’ is certainly debatable. If you really want to watch super-responders, watch the World Championships in Track and Field each year. Or if you want to wait every 4 years, the Olympics. Those men and women are by definition super- responders. |
|
|