|
Growth Hormone, IGF-1, MGF, Insulin and Peptides Discuss here everything related to HGH, IGF-1, MGF, Insulin and Peptides |
|
LinkBack | Thread Tools | Display Modes |
|
|||
Do I really need t3 or t4 with my gh ?
I'm really glad I found this site I hope I get some good insight or feedback on some of my questions . So i strarted my first cycle of growth got right around 10 months worth ... And was advised by some people at gym and reading on forums to take t3 or t4 so I had some t3 left over from last year 25mcg capsules and figured since i had taken it before I could start with that dose per day .. But after two weeks I was dying I couldn't move every muscle in my body was aching ..I thought I had the flu . So I finally went to the Er I told them about the t3 I was taking and they did labs my thyroid was off pretty bad doctor said it should go back to normal in a week or so .. But after that experience I don't want to take anything that directly affects my thyroid again.. So if I don't take the t3 or 4 how will that affect my gh ? I have to do more labs this week I hope that my thyroid recovers if not I'll be a fat balloon right lol ? Just invade this helps I'm running 5 ius per day 5 on 2 off .. And currently 600 mg tren enanthate and 800 mg of sust ... Anyway if anyone can help me with any experience strength and hope I would greatly appreciate thanks ..
|
|
||||
Here’s why I think this is:
Additional T3 is not all that’s needed here. What’s needed is the actual conversion process of T4-T3, and the deiodinase presence and activity that it involves. This is because Local 5′-deiodination of l-thyroxine (T4) to active the thyroid hormone 3,3′,5-tri-iodothyronine (T3) is catalyzed by the two 5′-deiodinase enzymes (D1 and D2). These enzymes not only “create” T3 out of T4, but actually regulates various T(3)-dependent functions in many tissues including the anterior pituitary and liver. So when there is an excess of T3 in the body, but normal levels of T4, the body’s thyroid axis sends a negative feedback signal., and produces less (D1 and D2) deiodinase, but more of the D3 type, which signals the cessation of the T4-T3 conversion process, and is inhibitory of many of the synergistic effects that T3 has! Remember, Type 3 iodothyronine deiodinase (D3) is the physiologic INACTIVATOR of thyroid hormones and their effects (13)and is well known to have independent interaction with growth factors (which is what GH and IGF-1 are).(14) This is because with adequate T4 and excess T3, (D1 and D2) deiodinase is no longer needed for conversion of T4 into T3, but levels of D3 deiodinase will be elevated. When there is less of the first two types of deidinase, it would seem that the T3 which has been converted to T4 can not exert it’s protein sparing (anabolic effects), as those first two types are responsible for mediation of many of the effects T3 has on the body. This seems to be one of the ways deiodinase contributes to anabolism in the presence of other hormones. All of this would explain why anecdotally we see bodybuilders who use T3 lose a lot of muscle if they aren’t using anabolics along with it- they’re not utilizing the enzyme that would regulate some of T3’s ability to stimulate protein synthesis, while they are simultaneously signaling the body to produce an inhibitory enzyme (D3). And remember, for decades bodybuilders who were dieting for a contest have been convinced that you lose less muscle with T4 use, but that it’s less effective for losing fat when compared with T3? Well, as we’ve seen, without something (GH in this case) to aid in the conversion process, it would clearly be less effective! Since the deiodinase enzyme is also located in the liver, and we see decreased hepatic nitrogen clearance with GH + T3, it would seem that the D3 enzyme is exerting it’s inhibitory effects, but in the absence of the effects of the first two deiodinase enzymes, it remains unchecked and therefore not only limits the GH’s nitrogen retention capability. In other words, if we have enough to GH in our body aid in supraphysiological conversion of T4 into T3, but we already have the too much (exogenous) T3, the GH is not going to be converting any excess T4 into T3 after a certain point- which would be a limiting factor in GH’s anabolic effects, when coupled with the act that we’ve allowed the D3 enzyme to inhibit the T3/GH synergy that is necessary. As further evidence, when we look at certain types of cellular growth (the cartilage cell in this case) we see that GH induced rises in IGF-I stimulates proliferation, whereas T3 is responsible for hypertrophic differentiation. So it would seem that in some tissues, IGF-1 stimulates the synthesis of new cells, while T3 makes them larger. In this particular case, The fact that T4 and (D1) deiodinase is am active component in this system is noted by the authors. They clearly state (paraphrasing) that: “T4 is is converted to T3 by deiodinase (5′-DI type 1) in peripheral tissues…[furthermore]GH stimulates conversion of T4 to T3 , suggesting that some effects of GH may involve this pathway.” The thing I want you to notice is that the authors of this paper state that the that the conversion PATHWAY is probably involved, and not the simple presence of T3. (15 ) Also, that same study notes that T3 has the ability to stimulates IGF-I and expression in tissues that whereas GH has no such effect (ibid). So what are we doing when we add T3 to GH? We’re effectively shutting down the conversion pathway that is responsible for some of GH’s effects! And what would we be doing if we added in T4 instead of T3? You got it- we’d be enhancing the pathway by allowing the GH we’re using to have more T4 to convert to T3, thus giving us more of an effect from the GH we’re taking. Adding T4 into our GH cycles will actually allow more of the GH to be used effectively! Remember, the thing that catalyzes the conversion process is the deiodinase enzyme. This is also why using low amounts of T3 would seem (again, anecdotally in bodybuilders) to be able to slightly increase protein synthesis and have an anabolic effect – they aren’t using enough to tell the body to stop or slow down production of the deiodinase enzyme, and hence .Although this analogy isn’t perfect, think of GH as a supercharger you have attached to your car…if you don’t provide enough fuel for it to burn at it’s increased output level, you aren’t going to derive the full effects. Thyroid status also may influence IGF-I expressionin tissues other than the liver.So what we have here is a problem. When we take GH, it lowers T3 levels…but we need T3 to keep our GH receptor levels optimally upregulated. In addition, it’s suspected that many of GH’s anabolic effects are engendered as a result of production of IGF-1, so keeping our IGF receptors upregulated by maintaining adequate levels of T3 seems prudent. But as we’ve just seen, supplementing T3 with our GH will abolish Growth Hormone’s functional hepatic nitrogen clearance, possibly through the effect of reducing the bioavailability of insulin-like growth factor-I (12.) So we want elevated T3 levels when we take GH, or we won’t be getting ANYWHERE NEAR the full anabolic effect of our injectable GH without enough T3. And now we know that not only do we need the additional T3, but we actually want the CONVERSION process of T4 into T3 to take place, because it’s the presence of those mediator enzymes that will allow the T3 to be synergistic with GH, instead of being inhibitory as is seen when T3 is simply added to a GH cycle. And remember, we don’t only want T3 levels high, but we want types 1 and 2 deiodinase to get us there- and when we take supplemental T3, that just doesn’t happen…all that happens is the type 3 deiodinase enzyme shows up and negates the beneficial effects of the T3 when we combine it with GH. And that’s where myself and Dr. Daemon ended up, after a week of e-mails, researching studies, and gathering clues. If you’ve been using GH without T4, you’ve been wasting half your money – and if you’ve been using it with T3, you’ve been wasting your time. Start using T4 with your GH, and you’ll finally be getting the full results from your investment. References: GrowthFactors. 1990;2(2-3):99-109.Interaction of TSH, insulin and insulin-like growth factors in regulating thyroid growth and function. Eggo MC, Bachrach LK, Burrow GN. F, Rumpler M, Klaushofer K 1994 Thyroid hormones increase insulin-like growth factor mRNA levels in the clonal osteoblastic cell line MC3T3- E1. FEBS Lett 345: 67–70 Relationship of the rate of transcription to the level of nuclear thyroid hormone-receptor complexes.J Biol Chem. 1984 May 25;259(10):6284-91. Yaffe BM, Samuels HH. Thyroid morphology and function in adults with untreated isolated growth hormone deficiency. J Clin Endocrinol Metab. 2006 Mar;91(3):860-4. Epub 2006 Jan 4. Eur J Endocrinol.1995 Dec;133(6):646-53.Influence of thyroid hormones on the regulation of growth hormone secretion. Giustina A, Wehrenberg WB. Binoux M, Faivre-Bauman A, Lassarre C, Tixier-Vidal A 1985 Triiodothyronine stimulates the production of insulin-like growth factor I (IGF-I) by fetal hypothalamus cells cultured in serum free medium. Dev Brain Res 21:319–323 Eur J Endocrinol. 1996 May;134(5):563-7.Insulin-like growth factor I alters peripheral thyroid hormone metabolism in humans: comparison with growth hormone.Hussain MA, Schmitz O, Jorgensen JO, Christiansen JS, Weeke J, Schmid C, Froesch ER Harakawa S, Yamashita S, Tobinaga T, Matsuo K, Hirayu H, Izumi M, Nagataki S, Melmed S. In vivo regulation of hepatic insulin-like growth factor-1 messenger ribonucleic acids with thyroid hormone. Endocrinol Jpn 37(2):205-11, 1990 Hochberg Z, Bick T, Harel Z Alterations of human growth hormone binding by rat liver membranes during hypo- and hyperthyroidism. Endocrinology 126(1):325-9, 1990 Matsuo K, Yamashita S, Niwa M, Kurihara M, Harakawa S, Izumi M, Nagataki S, Melmed S Thyroid hormone regulates rat pituitary insulin-like growth factor-I receptors. Endocrinology 126(1):550-4, 1990 The Journal of Clinical Endocrinology & Metabolism Vol. 88, No. 11 5221-5226, 2003. High Dose Growth Hormone Exerts an Anabolic Effect at Rest and during Exercise in Endurance-Trained Athletes M. L. Healy, J. Gibney, D. L. Russell-Jones, C. Pentecost, P. Croos, P. H. Sönksen and A. M. Umpleby J Hepatol. 1996 Mar;24(3):313-9. Effects of long-term growth hormone (GH) and triiodothyronine (T3) administration on functional hepatic nitrogen clearance in normal man.Wolthers T, Grofte T, Moller N, Vilstrup H, Jorgensen JO Huang, SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid. 2005 Aug;15(8):875-81. Review. Hernandez. A. Structure and function of the type 3 deiodinase gene.Thyroid. 2005 Aug;15(8):865-74. Review. F, Rumpler M, Klaushofer K 1994 Thyroid hormones increase insulin-like growth factor mRNA levels in the clonal osteoblastic cell line MC3T3- E1. FEBS Lett 345: 67–70 © 2005 Par Deus Inc. All Rights Reserved. Reprinted with permission. " Thanks to S&S_Shovelhead
__________________
www.steroidscycles.net www.hypermuscles.com Disclaimer: Hypermuscles.com does not promote the use of anabolic steroids without a doctor's prescription. The information we share is for entertainment and research purposes only.
Last edited by Cornish_Celt; 08-24-2015 at 06:08 PM. |
|
|||
Cornesh Celt
Thanks for the info very informative read .. And I did take away that I should be using T4 while on growth but after having complications from the T3 with my thyroid or do you think it would be OK to try to add in anything else that affect my thyroid because I was pretty sick I couldn't get out of bed for days and my whole body ached I missed a whole week of work and thought that I was dying also ekg showed minor damage to my heart ... I'm just hoping thryriod returns to normal .. I'm still weak and have no real stamina small tasks fatigue me .. Have you ever heard of this happening before ? Anyway thanks again for your input I have a lot still to learn about growth
|
|
||||
Quote:
You have minor damage to your heart yet you still want to use this stuff, your heart is a muscle and will grow, minor damage could well become major damage. I would give it a rest
__________________
www.steroidscycles.net www.hypermuscles.com Disclaimer: Hypermuscles.com does not promote the use of anabolic steroids without a doctor's prescription. The information we share is for entertainment and research purposes only.
|
|
|